Keyword - Proteomics
Keyword History
Publications
3 publications with this keyword
An omics-based machine learning approach to predict diabetes progression: a RHAPSODY study.
Slieker, Roderick C; Münch, Magnus; Donnelly, Louise A; Bouland, Gerard A; Dragan, Iulian; Kuznetsov, Dmitry; Elders, Petra J M; Rutter, Guy A; Ibberson, Mark; Pearson, Ewan R; 't Hart, Leen M; van de Wiel, Mark A; Beulens, Joline W J
Diabetologia, Volume 67, Issue 5 (2024)
PMID: 38374450 DOI: 10.1007/s00125-024-06105-8
Citations: 9 (Scopus)
Tags: Consortia: IMI-RHAPSODY | Study: DCS | Study: GoDARTS
Slieker, Roderick C; Münch, Magnus; Donnelly, Louise A; Bouland, Gerard A; Dragan, Iulian; Kuznetsov, Dmitry; Elders, Petra J M; Rutter, Guy A; Ibberson, Mark; Pearson, Ewan R; 't Hart, Leen M; van de Wiel, Mark A; Beulens, Joline W J
Diabetologia, Volume 67, Issue 5 (2024)
PMID: 38374450 DOI: 10.1007/s00125-024-06105-8
Citations: 9 (Scopus)
Tags: Consortia: IMI-RHAPSODY | Study: DCS | Study: GoDARTS
Multi-omics subgroups associated with glycaemic deterioration in type 2 diabetes: an IMI-RHAPSODY Study.
Li, Shiying; Dragan, Iulian; Tran, Van Du T; Fung, Chun Ho; Kuznetsov, Dmitry; Hansen, Michael K; Beulens, Joline W J; Hart, Leen M 't; Slieker, Roderick C; Donnelly, Louise A; Gerl, Mathias J; Klose, Christian; Mehl, Florence; Simons, Kai; Elders, Petra J M; Pearson, Ewan R; Rutter, Guy A; Ibberson, Mark
Front Endocrinol (Lausanne), Volume 15 (2024)
PMID: 38510703 DOI: 10.3389/fendo.2024.1350796
Citations: 3 (Scopus)
Tags: Consortia: IMI-RHAPSODY | Study: DCS | Study: GoDARTS
Li, Shiying; Dragan, Iulian; Tran, Van Du T; Fung, Chun Ho; Kuznetsov, Dmitry; Hansen, Michael K; Beulens, Joline W J; Hart, Leen M 't; Slieker, Roderick C; Donnelly, Louise A; Gerl, Mathias J; Klose, Christian; Mehl, Florence; Simons, Kai; Elders, Petra J M; Pearson, Ewan R; Rutter, Guy A; Ibberson, Mark
Front Endocrinol (Lausanne), Volume 15 (2024)
PMID: 38510703 DOI: 10.3389/fendo.2024.1350796
Citations: 3 (Scopus)
Tags: Consortia: IMI-RHAPSODY | Study: DCS | Study: GoDARTS